
1. Tiến sĩ Nguyễn Sơn Hà - Giáo viên Trường THPT Chuyên ĐHSP Hà Nội:
Khi ôn tập môn Toán trước kỳ thi THPT quốc gia 2016, thí sinh cần lưu ý những nội dung quan trọng dưới đây:
Giảm bớt thời gian ôn tập một số nội dung khi ngày thi sắp đến
Học sinh cần biết nội dung giảm tải môn toán THPT theo Công văn số 5842 BGDĐT–VP ngày 01/9/2011 của Bộ GD& ĐT. Ngoài ra, có những nội dung ở sách giáo khoa ban nâng cao nhưng lại không có trong sách giáo khoa ban cơ bản như:
Giải và biện luận hệ phương trình bậc nhất hai ẩn bằng cách sử dụng định thức, phương trình của đường hypebol, phương trình của đường parabol, công thức xác định khoảng cách từ một điểm trên đường elip đến tiêu điểm của đường elip, đường chuẩn của đường cônic (Toán 10);
Biến ngẫu nhiên rời rạc, định nghĩa thống kê của xác suất (Toán 11); đường tiệm cận xiên của đồ thị hàm số, khảo sát sự biến thiên và vẽ đồ thị của hàm bậc hai trên bậc nhất, sự tiếp xúc của hai đường cong, hệ phương trình mũ và hệ phương trình lôgarit;
Tính thể tích của khối tròn xoay khi quay hình phẳng quanh trục Oy, dạng lượng giác của số phức, phương trình bậc hai có hệ số không phải là số thực, công thức tính diện tích của một hình bình hành trong không gian tọa độ, công thức tính thể tích của một khối hộp trong không gian tọa độ (Toán 12).
Không lệ thuộc hoàn toàn vào ma trận đề thi của những năm trước
Thí sinh cần chủ động ôn tập nhiều chuyên đề trong sách giáo khoa môn Toán, không lệ thuộc hoàn toàn vào ma trận đề thi của những năm trước. Cấu trúc đề thi ổn định nhưng có thể không cố định, Bộ GD& ĐT không ban hành văn bản về cấu trúc đề thi. Đề thi phân hóa ở 4 mức độ khác nhau:Nhận biết – thông hiểu – vận dụng – vận dụng cao.
Mặc dù có 4 mức độ phân hóa rõ rệt trong đề thi nhưng ma trận đề thi các năm có thể thay đổi. Cùng một cấu trúc đề thi được thể hiện ở các chủ đề, có thể có nhiều ma trận đề thi khác nhau tương ứng với những cách phân bố điểm khác nhau và đòi hỏi mức độ nhận thức khác nhau ở mỗi chủ đề.
Năm 2016, Bộ GD&ĐT thông báo có 40% câu hỏi nâng cao trong đề thi nhưng không có văn bản quy định câu hỏi nâng cao thuộc những chủ đề nào. Thi cử là một khâu đột phá trong đổi mới giáo dục, xu hướng dạy học chú trọng phát triển năng lực người học, dạy học tích hợp liên môn đang được ngành Giáo dục quan tâm.
Vì vậy, có thể xuất hiện câu hỏi ở mức độ vận dụng hoặc vận dụng cao trong đề thi nhằm đánh giá khả năng vận dụng toán học để giải quyết các vấn đề trong thực tiễn hoặc trong môn học khác.
Học sinh nên xem lại câu 9 - đề dự bị thi THPT quốc gia môn Toán năm 2015 để biết thêm về một yêu cầu mới lạ so với nhiều đề thi chính thức của các năm trước, xem lại 3 đề thi của Bộ GD&ĐT năm 2015 (đề minh họa, đề chính thức và đề dự bị) để thấy rằng ma trận của các đề không hoàn toàn giống nhau.
Không thừa nhận kiến thức ngoài sách giáo khoa để giải bài tập
Thí sinh cần nắm vững những công thức được đưa vào sách giáo khoa phổ thông, không thừa nhận kiến thức ngoài sách giáo khoa để giải bài tập. Bộ GD&ĐT không ban hành quy định về những kiến thức ngoài sách giáo khoa được sử dụng trong kì thi THPT quốc gia.
Vì vậy, học sinh cần hệ thống lại các công thức toán trong sách giáo khoa để nắm những kết quả nào được thừa nhận khi đi thi. Nếu học sinh vận dụng kết quả ngoài sách giáo khoa để làm bài tập thì cũng cần phải học lại cả cách chứng minh các kết quả đó.
Dành nhiều thời gian tự học, tự rèn luyện kĩ năng
Học sinh cần chú ý tự học, tự rèn luyện kĩ năng trình bày, kĩ năng tính toán. Khi học sinh làm bài thi, có thể xảy ra nhiều tình huống bất ngờ: học sinh quên những kiến thức mà mình đã hiểu trong quá khứ, học sinh không thể tìm ra đáp số đúng mặc dù biết cách giải, học sinh nghĩ đúng nhưng viết nhầm và không phát hiện ra lỗi đó,…
2. Thạc sĩ Ngô Thanh Sơn - Tổ trưởng tổ Toán trường THPT Vĩnh Viễn – TP Hồ Chí Minh:
Không nên thức quá khuya
Trong những ngày gần thi do tâm lý quá lo lắng nên một số em tiếp tục ôn thi rất căng thẳng: thức quá khuya, sưu tầm thêm bài tập lạ và khó để giải. Thật ra điều này là không nên vì chỉ khiến các em mất sức khỏe, thời gian và sự tự tin.
Các em nên ôn tập một cách nhẹ nhàng bằng cách xem lại các bài tập và các công thức đã được học trong năm. Cố gắng để khi vào phòng thi, các em có được một sức khỏe tốt, một tâm lý thoải mái để có thể làm bài thi đúng như sức học bình thường của mình. Đa số học sinh vào phòng thi đều làm bài kém hơn lúc bình thường.
Lưu ý đặt điều kiện cho bài toán có nghĩa
Phải đọc đề kỹ trước khi bắt đầu làm bài, tuyệt đối tránh tình trạng hiểu sai đề. Làm bài theo nguyên tắc: chọn những câu dễ để làm trước, câu khó làm sau. Các em không được làm tắt, nên thực hiện các phép biến đổi một cách cẩn thận và chậm rãi ngay trong bài thi nếu bài toán đã có hướng giải quyết đúng. Các em cần lưu ý đặt điều kiện cho bài toán có nghĩa, sau khi giải xong phải kiểm tra lại kết quả, thử lại các nghiệm xem có thỏa mãn yêu cầu bài toán hay không.
Nên làm bài ngay vào giấy thi, giấy nháp chỉ dùng để thử và tìm ra các phương pháp giải khi chưa biết chắc cách giải đó có đi đến kết quả hay không. Trong khi làm bài, các em phải tập trung toàn bộ tâm trí vào công việc của mình, đừng nghĩ đến đậu hay rớt, điểm cao hay điểm thấp vì bất cứ ý nghĩ (không đúng lúc) nào cũng làm tốn năng lượng và phân tâm.
Đối với bài thi môn toán, theo cấu trúc đề thi của bộ đưa ra trong kì thi THPT Quốc gia năm 2015, đề nghị các em nên lưu ý những điều sau đây:
Câu 1: Việc khảo sát hàm số và vẽ đồ thị, các em hết sức lưu ý việc tính đúng đạo hàm. Bởi vì nếu tính sai thì điểm tối đa các em có thể đạt được cho câu này chỉ là 0.25đ. Thông thường việc vẽ đồ thị chủ yếu dựa vào các điểm đặc biệt, độc lập với đạo hàm và bảng biến thiên nên có thể dùng dáng điệu (đồng biến, nghịch biến) của đồ thị đã vẽ để kiểm tra lại dấu của đạo hàm và bảng biến thiên có phù hợp với đồ thị hay không? Nên vẽ đồ thị vừa phải, không nên quá to (sẽ khó vẽ).
Không được vẽ đồ thị bằng viết chì, nếu không bài thi sẽ bị chấm tập thể trong hội đồng chấm thi. Đây cũng là quy định chung với các câu có hình vẽ, trừ khi vẽ hình bằng compa.
Câu 2: Đây là câu tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn [a; b]; hoặc một câu hỏi phụ của phần khảo sát hàm số (gồm các dạng toán: sự đơn điệu của hàm số, cực trị của hàm số, sự tương giao của đồ thị hàm số và đường thẳng, tiếp tuyến, tìm điểm thỏa điều kiện cho trước). Với dạng bài tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một đoạn, cần chú ý đến việc hàm số phải xác định và liên tục trên đoạn đó. Nếu đề chưa cho đoạn [a; b] thì ta phải tự xác định [a; b] bằng cách đi tìm tập xác định, cũng có thể tìm [a; b] nếu ta đổi biến khi gặp hàm lượng giác (ví dụ khi đặt t = sinx hoặc t = cosx thì t thuộc đoạn [–1; 1]).
Câu 3: Đề thường ra 2 ý: các dạng toán về số phức và phương trình/ bất phương trình mũ – logarit. Đây là một câu tương đối dễ trong đề thi đại học các năm gần đây. Về số phức các em chỉ cần biết các công thức cơ bản, các thao tác tính toán đơn giản là có thể làm được. Cần biết cách sử dụng máy tính cầm tay để có thể kiểm tra bài làm của mình.
Ở câu phương trình hoặc bất phương trình mũ – logarit, ta chỉ cần nắm vững các dạng toán cơ bản: phương pháp lấy logarit 2 vế, đưa về cùng cơ số, đặt ẩn số phụ là có thể giải trọn vẹn câu này. Các em có thể bỏ qua phương pháp giải bằng các dựa vào tính đơn điệu của hàm số cũng các bài toán mà trong cơ số có chứa x vì không phù hợp với tinh thần đề thi hiện nay. Phải nhớ đặt điều kiện cho các biểu thức logarit, cũng như điều kiện khi sử dụng phương pháp đặt ẩn số phụ.
Câu 4: Với bài toán tích phân, các em nên chú ý đến phương pháp tích phân từng phần và phương pháp đổi biến. Đây là câu hỏi dễ và có thể vận dụng kiến thức để giải các bài toán trong đời sống thực tiễn nên các em cần hiểu rõ ứng dụng của tích phân để tính diện tích và thể tích.
Phần đổi biến dạng lượng giác (x = asint, x = atant…) có thể được lược bỏ vì hiện nay câu tích phân là câu dành cho đối tượng học sinh trung bình cũng có thể lấy điểm trọn vẹn.
Câu 5: Là một bài toán hình học giải tích trong không gian với hệ trục tọa độ Oxyz. Câu này là một câu dễ, nếu thuộc lý thuyết và biết vận dụng một cách thích hợp, các em có thể giải quyết được một cách dễ dàng. Cần rèn luyện cách tính các phép toán trong hệ trục tọa độ Oxyz bằng máy tính nhằm có thể dễ dàng kiểm tra kết quả.
Học sinh nên chọn mua loại máy tính cầm tay có thể giải được hệ gồm 4 phương trình bậc nhất 4 ẩn, điều này sẽ giúp tiết kiệm thời gian rất nhiều trong bài toán tìm phương trình mặt cầu.
Câu 6: Để giải tốt bài toán phương trình lượng giác, ngoài việc thuộc nhuần nhuyễn các công thức, biết cách biến đổi và vận dụng các công thức, các em cần nghĩ đến 2 phương pháp giải chủ yếu là: đặt nhân tử chung và đặt ẩn phụ.
Cũng cần phải chú ý thêm đến dạng toán tìm giá trị của biểu thức lượng giác đã xuất hiện trong đề thi minh họa, đề thi chính thức của Bộ giáo dục trong năm 2015 cũng như trong các đề thi thử của các trường trên toàn quốc.
Về phần tổ hợp các em phải nắm vững qui tắc đếm, hoán vị, tổ hợp và chỉnh hợp, biết khai triển nhị thức Newton ở mức độ cơ bản. Phần xác suất chủ yếu tập trung vào công thức tính xác suất cổ điển (tức là tính số phần tử của không gian mẫu và của biến cố), nhưng cần nói rõ ra không gian mẫu và phải gọi tên biến cố.
Câu 7: Với bài toán Hình học không gian nếu không giải được bằng phương pháp hình học thuần túy thì các em nên tìm cách đưa hệ trục tọa độ vào để chuyển thành bài toán hình giải tích trong không gian. Thường là những câu hỏi về khoảng cách và thể tích. Thông thường đây là một câu tương đối dễ, nhưng là phần kiến thức mà đa số học sinh đều sợ, vì đã không nắm vững các kiến thức cơ bản đã được học ở lớp 11.
Câu 8: Là một bài toán hình học giải tích trong trong mặt phẳng với hệ tọa độ Oxy. Các em nên ôn lại những kiến thức hình học của lớp 9 và lớp 10 để có thể nhận ra các tính chất hình học của bài toán. Đây là một câu khó vì đòi hỏi thí sinh phải nhớ và biết sử dụng kiến thức của các lớp dưới.
Để có thể nhận ra được các tính chất hình học này, việc vẽ hình một cách chính xác dựa vào dữ kiện của đề bài là rất quan trọng. Tuy nhiên, học sinh phải luôn nhớ rằng, ở câu này yếu tố “giải tích” vẫn được xem trong, vì vậy không nên sa đà vào việc giải các bài tập quá đặt nặng về tính chất hình học phẳng.
Câu 9: Là một câu về giải phương trình, hệ phương trình hoặc bất phương trình có chứa căn thức. Thường đây là một câu khó thứ nhì (sau câu 10). Các phương pháp giải quan trọng như đặt ẩn phụ, liên hợp, dùng bất đẳng thức để đánh giá cần được kết hợp nhuần nhuyễn với nhau khi giải. Các em phải biết cách sử dụng hiệu quả máy tính cầm tay để giảm nhẹ khối lượng tính toán, đồng thời hỗ trợ cho mình trong quá trình phân tích nhân tử, cũng như dự đoán nghiệm.
Một số lớn các bài toán có thể giải khá hiệu quả với sự hỗ trợ của máy tính cầm tay. Học sinh cũng cần nghiên cứu thêm các bài toán gây nhiều khó khăn cho việc giải bằng máy tính, đó là những bài toán sử dụng bất đẳng thức để đánh giá biểu thức. Phải nắm vững các phương pháp giải và chịu khó rèn luyện thêm các bài nâng cao trong suốt quá trình học mới có thể giải được câu này trong một thời gian ngắn.
Câu 10: Đây là câu khó nhất dùng để phân loại thí sinh, thường là câu bất đẳng thức hoặc tìm giá trị lớn nhất hay giá trị nhỏ nhất. Để làm được câu này đòi hỏi thí sinh phải có khả năng tư duy độc lập, có óc chủ động sáng tạo, có khả năng vận dụng kiến thức tổng hợp vào giải quyết một vấn đề, không làm theo khuôn mẫu.
Phương pháp được sử dụng phổ biến trong các đề thi của Bộ giáo dục trong suốt những năm gần đây là đưa bài toán 3 biến x, y, z về bài toán 1 biến nào đó rồi khảo sát hàm một biến đó để đi đến kết luận. Thường thì ta sẽ dồn về biến có vai trò không đối xứng. Suốt quá trình đánh giá bài toán, ta phải đảm bảo được dấu “=” xảy ra.
Nếu các em không thật sự tự tin để giải thì nên bỏ qua, sẽ quay lại bài này sau khi đã giải quyết những bài toán khác và còn thời gian. Để đậu đại học, không cần tới điểm 10, nên dành thời gian chăm chút 9 điểm còn lại.
Với chủ trương của Bộ giáo dục là ra đề chủ yếu nằm trong chương trình lớp 12, cũng như tỉ lệ điểm dành cho mức độ cơ bản chiếm khoảng 60% thì các câu từ câu 1 đến câu 6 sẽ có độ khó không chênh lệch với đề thi THPT Quốc gia năm 2015.
Việc cho câu 8 – 9 quá dễ như năm 2015 đã dẫn đến việc chỉ phân loại được học sinh trung bình khá và học sinh giỏi, chứ chưa thể phân loại được học sinh khá. Vì vậy các câu 7 – 8 – 9 sẽ được nâng dần độ khó, ít nhất là bằng với mức độ của đề thi đại học ở các năm trước.
Cuối cùng, đối với các thí sinh, mọi chi tiết về các chủ đề trên đều quan trọng, nhưng quan trọng nhất, đó là các em phải tự trang bị cho mình đầy đủ kiến thức và sự bình tĩnh, tự tin trong lúc làm bài thi. Chúc các em có một mùa thi may mắn và thành công.
(Nguồn sưu tầm Internet)
Không có nhận xét nào:
Đăng nhận xét